

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 9

Question Paper Code : UM9257

KEY

1	2	3	4	5	6	7	8	9	10
А	D	С	В	D	С	С	А	В	А
11	12	13	14	15	16	17	18	19	20
С	С	С	D	С	В	В	А	D	В
21	22	23	24	25	26	27	28	29	30
С	С	В	А	В	D	С	А	D	В
31	32	33	34	35	36	37	38	39	40
A,B,C,D	B,D	A,B,C	B,D	A,C,D	В	D	С	А	В
41	42	43	44	45	46	47	48	49	50
А	С	А	D	С	С	В	В	А	D

EXPLANATIONS

MATHEMATICS - 1

1: (A) Area of parallelogram BCDE = Area of the trapezium BCFE + area of \triangle CDF

= Area of the trapezium BCFE + area of $\triangle AEF$ [$\because \triangle CDF \cong \triangle AEF$]

= Area of $\triangle ABC$

= 80 cm²

2. (D) From options x = 5 then

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{126 \times 21 \times 90 \times 15} \text{ cm}^{2}$$

$$= \sqrt{6 \times 21 \times 21 \times 6 \times 15 \times 15} \text{ cm}^{2}$$

$$= 6 \times 21 \times 15 \text{ cm}^{2}$$

$$= 1890 \text{ cm}^{2}$$

$$\therefore \frac{1}{2} \times 111 \text{ cm} \times h = 1890 \text{ cm}^{2}$$

$$h = 1890 \text{ cm}^{2} \times \frac{2}{111 \text{ cm}}$$

$$= \frac{1260 \text{ cm}}{37}$$

$$= 34.05 \text{ cm}$$
4: (B) Given both length are equal and perimeters are equal \Rightarrow Adjacent side to length are also equal. But hypotenuse is greater than remaining two sides of a right angled triangle.

$$\therefore \text{ Breadth of a rectangle > height of the parallelogram}$$

$$\therefore \text{ Area of the rectangle > Area of the parallelogram}$$
5: (D) Given $2\pi r(h + r) = 1232 \text{ cm}^{2}$
 $2 \times \frac{22}{7} \times r(21 + r) = 1232 \text{ cm}^{2}$
 $21r + r^{2} = 1232 \times \frac{7}{22} \times \frac{1}{2}$
 $r^{2} + 21r - 196 = 0$
 $r(r + 28) - 7(r + 28) = 0$
 $(r + 28)(r - 7) = 0$
 $r = 7 (\text{ or } r = -28 \text{ is rejected}$

$$\therefore \text{ Volume} = \pi r^{2}h = \frac{22}{7} \times 7 \times 7 \times 21 \text{ cm}^{3}$$
 $= 3234 \text{ cm}^{3}$

6: (C) It is a square

If the abscissas of A & B are same then distance between the points = difference of ordinates

7: (C) Given $lb = A_1$ units², $bh = A_2$ units², $hl = A_3$ units² $\therefore lb \times bh \times hl = A_1A_2A_3$ units⁶ $l^2b^2h^2 = A_1A_2A_3$ units⁶ $lbh = \sqrt{A_1A_2A_3}$ units³

 \therefore Volume = $\sqrt{A_1A_2A_3}$ units³

8: (A) Given
$$\frac{x^2 + y^2}{xy} = 1$$

 $\therefore x^2 - xy + y^2 = 0$
 $\therefore x^3 + y^3 = (x + y)(x^2 - xy + y^2)$
 $= (x + y)(0)$
 $= 0$

9: (B) Side of the rhombus = $\frac{146 \text{ cm}}{4}$ = 36.5 cm

Given AC = 55 cm

$$\therefore AE = \frac{AC}{2} = 27.5 \text{ cm}$$

$$\mathsf{E}\mathsf{D}^2 = \mathsf{A}\mathsf{D}^2 - \mathsf{A}\mathsf{E}^2$$

$$= (36.5)^{2} - (27.5)^{2}$$

$$= (36.5 + 27.5)(36.5 - 27.5)$$

$$= 64 \times 9$$
ED = $\sqrt{64 \times 9}$
ED = $\sqrt{64 \times 9}$ = 8 × 3 = 24 cm
 \therefore BD = 2 × ED = 48 cm
Area of the rhombus = $\frac{1}{2} \times AC \times BD$
 $= \frac{1}{2} \times 55 \times 48 \text{ cm}^{2}$
 $= 1320 \text{ cm}^{2}$
10: (A) $\frac{\sqrt[6]{12}}{\sqrt{3} \times \sqrt[3]{2}} = \sqrt[6]{12}}{\sqrt[6]{3}^{2}} = \sqrt[6]{12}} = \sqrt[6]{12}}{\sqrt[6]{3}^{2}} = \sqrt[6]{12}}{\sqrt[6]{27 \times 4}} = \sqrt[6]{1}}{\sqrt[6]{9}}$
11: (C) Given $f(x) = (x + 1)^{4}$
 $= ax^{4} + bx^{3} + cx^{2} + dx + e$
 $\therefore f(-1) = (-1 + 1)^{4}$
 $= a(-1)^{4} + b(-1)^{3} + c(-1)^{2} + d(-1) + e$
 $\therefore a - b + c - d + e = 0$
 $\therefore a + c + e = b + d$
12. (C) $\sqrt{\frac{(\sqrt{4 \times 3} - \sqrt{4 \times 2})(\sqrt{3} + \sqrt{2})}{(5 + \sqrt{4 \times 6})}}$
 $= \sqrt{\frac{2(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}{(5 + 2\sqrt{6})}}$
 $= \sqrt{\frac{2(3-2)}{(\sqrt{3} + \sqrt{2})^{2}}}$
 $= \sqrt{\frac{2}{\sqrt{3} + \sqrt{2}} \times \frac{(\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})}}$
 $= \sqrt{\frac{2}{\sqrt{3} + \sqrt{2}} \times \frac{(\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})}}$

13: (C) Let $x = \sqrt{30 + \sqrt{30 + \sqrt{30 + \dots - 10^{-10}}}}$ squaring on both sides $x^2 = 30 + \sqrt{30 + \sqrt{30 + \sqrt{30 + \dots - \cdots - 0}}}$ $\therefore x^2 = 30 + x$ $x^2 - x - 30 = 0$ $x^2 - 6x + 5x - 30 = 0$ x = 6 (or) x = -514: (D) $\left(x^{\frac{1}{3}} + x^{\frac{-1}{3}}\right)\left(x^{\frac{2}{3}} - 1 + x^{\frac{-2}{3}}\right)$ $= \left(x^{\frac{1}{3}} + x^{\frac{-1}{3}}\right) \left[\left(x^{\frac{1}{3}}\right)^{2} - x^{\frac{1}{3}} \times x^{\frac{-1}{3}} + \left(x^{\frac{-1}{3}}\right)^{2} \right]$ $= \left(x^{\frac{1}{3}}\right)^3 + \left(x^{\frac{-1}{3}}\right)^3$ $=(x+x^{-1})$ 15: (C) Given x + y + z = 21 $\therefore x - 7 + y - 5 + z - 9 = 0$ Let a = x - 7, b = y - 5 & c = z - 9 then $a + b + c = 0 \implies a^3 + b^3 + c^3 = 3abc$ = 3(x-7)(y-5)(z-9)16: (B) Given l = 3x, b = 2x & h = xGiven total surface area = 88 cm² $\therefore 2(lb + bh + hl) = 88 \text{ cm}^2$ $[(3x)(2x) + (2x)(x) + (x)(3x)] = \frac{88}{2} \text{cm}^2$ $6x^2 + 2x^2 + 3x^2 = 44$ cm² $11x^2 = 44 \text{ cm}^2$ $x^2 = \frac{44}{11} \text{cm}^2$ $\therefore x = 2$ Volume = $lbh = (3x)(2x)(x) = 6x^{3}$ $= 6 \times 8 \text{ cm}^3 = 48 \text{ cm}^3$

17: (B) Given
$$v_1 : v_2 = 2:3$$
 & $t_1 : t_2 = 1:2$
 $\therefore \frac{1}{3} \pi t_1^2 h_1 : \frac{1}{3} \pi t_2^2 h_2 = 2:3$
 $\Rightarrow \frac{t_1^2 h_1}{t_2^2 h_2} = \frac{2}{3}$
($\frac{1}{2}$)² × $\frac{h_1}{h_2} = \frac{2}{3}$
($\frac{1}{2}$

$$\therefore \angle ORQ = 90^{\circ} - x$$

in $\triangle QOR, 90^{\circ} - x + 90^{\circ} - x + \angle ROQ$
= 180°
$$\therefore \angle ROQ = 180^{\circ} - 180^{\circ} + 2x$$

= 2x
27: (C) LHS = $\frac{(2x+3)-(x+2)-(x+1)}{(x+1)(x+2)(2x+3)}$
= $\frac{2x+3-x-2-x-1}{(x+1)(x+2)(2x+3)}$
= 0
28: (A) LHS = $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \sqrt{50} + \sqrt{72}$
= $\sqrt{2} + \sqrt{2} \times 2x + \sqrt{3} \times 3x + \sqrt{4} \times 4x + 2}$
+ $\sqrt{5} \times 5x + \sqrt{6} \times 6x^{2}$
= $\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + 5\sqrt{2} + 6\sqrt{2}$
= $21\sqrt{2}$ = $\sqrt{441 \times 2}$
= $\sqrt{882}$
29: (D) $\sqrt{2x-7+2\sqrt{x^{2}-7x+12}}$
= $\sqrt{(\sqrt{x-4})^{2} + (\sqrt{x-3})^{2} + 2\sqrt{x-4}\sqrt{x-3}}$
= $\sqrt{(\sqrt{x-4})^{2} + (\sqrt{x-3})^{2} + 2\sqrt{x-4}\sqrt{x-3}}$
= $\sqrt{(\sqrt{x-4} + \sqrt{x-3})^{2}}$
= $(\sqrt{x-4} + \sqrt{x-3})^{2}$
30: (B) Given diameter of sphere
= side of cube = $2r$
 \therefore Surface areas ratio of sphere and cube
= $4\pi r^{2} : 6(2r)^{2}$
= $4 \times \frac{22}{7} \times r^{2} : 6 \times 4 \times r^{2}$
= 11 : 7×3
= 11 : 21

$$MATHEMATICS - 2$$
31: (A,B,C,D)
Let (2x² + x) be a \Rightarrow a² - 9a + 18
= a² - 6a - 3a + 18
= (a - 6)(a - 3)
= (2x² + x - 6)(2x² + x - 3)
= (2x² + 4x - 3x - 6)(2x² + 3x - 2x - 3)
= (2x - 3)(x + 2)(x - 1)(2x + 3)
32: (B,D)
Given f(t - 6) = 0
 \Rightarrow (t - 6)² + t - 6 - 6 = 0
 \Rightarrow t² - 12t + 36 + t - 12 = 0
 \Rightarrow t² - 11t + 24 = 0
 \Rightarrow t² - 8t - 3t + 24 = 0
t = 8 (or) 3
33: (A, B, C)
 $\sqrt{28 + 16\sqrt{3}} = \sqrt{4 \times 7 + 4 \times 4\sqrt{3}}$
= $2\sqrt{7 + 4\sqrt{3}}$
= $2\sqrt{7 + 2\sqrt{12}}$
= $2\sqrt{4 + 3 + 2\sqrt{3} \times \sqrt{4}}$
= $2\sqrt{2^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}$
= $2\sqrt{(2 + \sqrt{3})^2}$ = $2(2 + \sqrt{3})$
= $4 + 2\sqrt{3} = (\sqrt{3} + 1)^2$
34: (B,D)
Given $\pi R^2 + \pi r^2 = 116\pi$
 $\pi (R^2 + r^2) = 116\pi$
 $R^2 + r^2 = 116$
But $(R + r)^2 + (R - r)^2 = 2(R^2 + r^2)$
 $(R + r)^2 + 6^2 = 2 \times 116$
 $(R + r)^2 = 232 - 36$
 $R + r = \sqrt{196} = 14$
 $R + r = 14 \& R - r = 6$
 $\therefore R = 10 \& r = 4$
35: (A, C, D)
Options A, C, D are true about a cyclic trapezium

and square

website : www.unifiedcouncil.com

44. (

42. (C) F and C are overlapped Erotate
90° left we get the shape W
Same relation is applied to the second
image.
43. (A)
44. (D) Statement 3 & 2 : purple red is written
as Vet Get "
Statement 1 & 2 : "purple is written as
"Get"
Therefore "red is coded as Vet"
Black orange yellow Purple blue
$$\rightarrow$$

set jet let get bet
grey green red Purple \rightarrow get
pet wet vet
Purple blue red silver \rightarrow vet
get tet grey orange pink \rightarrow pet
45. (C) Daughter

My mother's only ground son's mother means \rightarrow lady herself daughter of lady means the girl is the daughter of Lady.

Hence, Rahul is born in 1999

Both statements required to the given question